Publications by authors named "D L Moehring"

Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity.

View Article and Find Full Text PDF

A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted.

View Article and Find Full Text PDF

We introduce lossless state detection of trapped neutral atoms based on cavity-enhanced fluorescence. In an experiment with a single 87Rb atom, a hyperfine-state-detection fidelity of 99.4% is achieved in 85  μs.

View Article and Find Full Text PDF

Objective: In developing countries, tibial shaft fractures are frequently stabilised using Surgical Implant Generation Network (SIGN) nails. Despite widespread use throughout the world, little is known regarding their biomechanical properties. This study aimed to compare the mechanical stiffness of the SIGN tibial nail with a standard hollow tibial nail.

View Article and Find Full Text PDF

An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%.

View Article and Find Full Text PDF