Publications by authors named "D L Marinus Oterdoom"

Objective: Clinical rating scales often fail to capture the full spectrum of dystonic symptoms. Deep brain stimulation of the globus pallidus interna (GPi-DBS) effectively treats dystonia, but response variability necessitates a reliable biomarker. Intermuscular coherence (4-12 Hz) has been linked to abnormal activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop and may serve as an objective measure of dystonia and GPi-DBS effectiveness.

View Article and Find Full Text PDF

Background: Since 2013, deep brain stimulation (DBS) has been reimbursed in the Netherlands as a proven effective treatment for treatment-resistant obsessive-compulsive disorder (OCD). Nevertheless, DBS is still rarely applied, and a national Dutch treatment protocol is lacking.

Aim: To prepare a nationwide multidisciplinary treatment protocol for the application of DBS in the treatment of treatment-resistant OCD.

View Article and Find Full Text PDF

Tremor, bradykinesia, and rigidity are incapacitating motor symptoms that can be suppressed with stereotactic neurosurgical treatment like deep brain stimulation (DBS) and ablative surgery (e.g., thalamotomy, pallidotomy).

View Article and Find Full Text PDF

Thalamotomy alleviates medication-refractory tremors in patients with movement disorders such as Parkinson's Disease (PD), Essential tremor (ET), and Holmes tremor (HT). However, limited data are available on tremor intensity during different thalamotomy stages. Also, the predictive value of the intraoperative tremor status for treatment outcomes remains unclear.

View Article and Find Full Text PDF

The disease status, progression, and treatment effect of essential tremor (ET) patients are currently assessed with clinical scores, such as the Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM). The use of objective and rater-independent monitoring of tremors may improve clinical care for patients with ET. Therefore, the focus of this study is to develop an objective accelerometry-based method to quantify ET, based on FTM criteria.

View Article and Find Full Text PDF