Longitudinal wastewater sampling during the COVID-19 pandemic was an important aspect of disease surveillance, adding to a more complete understanding of infection dynamics and providing important data for community public health monitoring and intervention planning. This was largely accomplished by testing SARS-CoV-2 RNA concentrations in samples from municipal wastewater treatment plants (WWTPs). We evaluated the utility of testing for virus levels upstream from WWTP within the residential neighborhoods that feed into the WWTP.
View Article and Find Full Text PDFProlactin is a peptide hormone produced in the anterior pituitary, which increase in several physiological and pathological situations. It is unclear if hyperprolactinaemia may affect glycosylation of immunoglobulin G (IgG). Twenty-five patients with hyperprolactinemia and 22 healthy control subjects were included in the study.
View Article and Find Full Text PDFRapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone.
View Article and Find Full Text PDFInteractions between germline-encoded natural killer (NK) cell receptors and their respective ligands on tumorigenic or virus-infected cells determine NK cell cytotoxic activity and/or cytokine secretion. NK cell cytokine responses can be augmented in and can potentially contribute to multiple sclerosis (MS), an inflammatory disease of the central nervous system focused upon the oligodendrocytes (OLs). To investigate mechanisms by which NK cells may contribute to MS pathogenesis, we developed an in vitro human model of OL-NK cell interaction.
View Article and Find Full Text PDFNew tools are needed to enable rapid detection, identification, and reporting of infectious viral and microbial pathogens in a wide variety of point-of-care applications that impact human and animal health. We report the design, construction, and characterization of a platform for multiplexed analysis of disease-specific DNA sequences that utilizes a smartphone camera as the sensor in conjunction with a hand-held "cradle" that interfaces the phone with a silicon-based microfluidic chip embedded within a credit-card-sized cartridge. Utilizing specific nucleic acid sequences for four equine respiratory pathogens as representative examples, we demonstrated the ability of the system to utilize a single 15 μL droplet of test sample to perform selective positive/negative determination of target sequences, including integrated experimental controls, in approximately 30 min.
View Article and Find Full Text PDF