Publications by authors named "D L Halladay"

Article Synopsis
  • In multiple myeloma (MM), a type of cancer, a protein called Notch3 helps the cancer cells grow and destroys bone.
  • When scientists blocked Notch3, they found that it slowed down the growth of MM cells and stopped them from making more bone-destroying cells.
  • Experiments showed that mice with blocked Notch3 grew smaller tumors and had less bone damage, suggesting that targeting Notch3 could be a good way to treat MM.
View Article and Find Full Text PDF

Background: The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/principal Findings: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) and glycogen synthase kinase-3 (GSK-3) inhibitor 603281-31-8, administered once daily increased bone formation in vivo. We investigated the molecular mechanisms of the anabolic responses of PTH and 603281-31-8 in rat osteopenia model. Female 6-month-old rats were ovariectomized (Ovx) and permitted to lose bone for 1 month, followed by treatment with PTH (1-38) at 10 microg/kg/day s.

View Article and Find Full Text PDF

The non-mineral component of bone matrix consists of 90% collagenous, 10% non-collagenous proteins. These proteins regulate mineralization, growth, cell signaling and differentiation, and provide bone with its tensile strength. Expression of bone matrix proteins have historically been studied individually or in small numbers owing to limitations in analytical technologies.

View Article and Find Full Text PDF

Unlabelled: GSK-3, a component of the canonical Wnt signaling pathway, is implicated in regulation of bone mass. The effect of a small molecule GSK-3 inhibitor was evaluated in pre-osteoblasts and in osteopenic rats. GSK-3 inhibitor induced osteoblast differentiation in vitro and increased markers of bone formation in vitro and in vivo with concomitant increased bone mass and strength in rats.

View Article and Find Full Text PDF