Publications by authors named "D L Falkoski"

Soybean utilization is limited by the presence of raffinose oligosaccharides (RFO), which are not digested by humans and cause gastrointestinal discomfort. This study explores the potential of α-galactosidases from Penicillium griseoroseum for RFO hydrolysis in soymilk. Two distinct α-galactosidase enzymes, designated α-Gal1 and α-Gal2, were purified using a combination of ion-exchange chromatography and native polyacrylamide gel electrophoresis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of cognitive functions, and it is the most prevalent type of dementia worldwide, accounting for 60 to 70% of cases. The pathogenesis of AD seems to involve three main factors: deficiency in cholinergic transmission, formation of extracellular deposits of β-amyloid peptide, and accumulation of deposits of a phosphorylated form of the TAU protein. The currently available drugs are prescribed for symptomatic treatment and present adverse effects such as hepatotoxicity, hypertension, and weight loss.

View Article and Find Full Text PDF

Filamentous fungi are prolific producers of carbohydrate-active enzymes (CAZymes) and important agents that carry out plant cell wall degradation in natural environments. The number of fungal species is frequently reported in the millions range, with a huge diversity and genetic variability, reflecting on a vast repertoire of CAZymes that these organisms can produce. In this study, we evaluated the ability of previously selected ascomycete and basidiomycete fungi to produce plant cell wall-degrading enzyme (PCWDE) activities and the potential of the culture supernatants to increase the efficiency of the Cellic® CTec2/HTec2 for steam-exploded sugarcane straw saccharification.

View Article and Find Full Text PDF

Marine fungi associated with macroalgae are an ecologically important group that have a strong potential for industrial applications. In this study, twenty-two marine fungi isolated from the brown seaweed sp were examined for their abilities to produce algal and plant biomass degrading enzymes. Growth of these isolates on brown and green algal biomass revealed a good growth, but no preference for any specific algae.

View Article and Find Full Text PDF

Background: is a thermophilic ascomycete fungus that is used as a producer of enzyme cocktails used in plant biomass saccharification. Further development of this species as an industrial enzyme factory requires a detailed understanding of its regulatory systems driving the production of plant biomass-degrading enzymes. In this study, we analyzed the function of MtXlr1, an ortholog of the (hemi-)cellulolytic regulator XlnR first identified in another industrially relevant fungus, .

View Article and Find Full Text PDF