Publications by authors named "D L Ebel"

Within this work, we present the first true three-dimensional (3D) analysis of chondrule size. Knowledge about the physical properties of chondrules is important for validating astrophysical theories concerning chondrule formation and their aggregation into the chondritic meteorites (known as chondrites) that contain them. The classification of chondrites into chemical groups also relies on chondrule properties, including their dimensions.

View Article and Find Full Text PDF

Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the εTi-εCr-ΔO systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a "missing reservoir" that bridges the gap between inner and outer Solar System materials.

View Article and Find Full Text PDF

When selecting a method for determining modal mineralogy and elemental composition of geological samples (e.g., meteorites), a number of factors should be considered, includingthe number of objects or the area to be analyzed; the scale of expected chemical variation; instrument time restrictions; and post-processing time.

View Article and Find Full Text PDF

Background: Ischemic preconditioning (IPC) protects the myocardium against ischemia/reperfusion injury. Evidence suggests that hyperglycemia inhibits IPC-induced cardioprotection. The effects of hyperglycemia initiated during different phases of IPC on myocardial injury were characterized with emphasis on apoptosis and aggregation of polymorphonuclear granulocytes (PMN).

View Article and Find Full Text PDF

In a consortium analysis of a large particle captured from the coma of comet 81P/Wild 2 by the Stardust spacecraft, we report the discovery of a field of fine-grained material (FGM) in contact with a large sulfide particle. The FGM was partially located in an embayment in the sulfide. As a consequence, some of the FGM appears to have been protected from damage during hypervelocity capture in aerogel.

View Article and Find Full Text PDF