Background: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge.
Methods: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma.
Glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Cancer stem-like cells (CSLCs) contribute to GBM invasiveness, representing promising targets. BAL101553, a prodrug of BAL27862, is a novel small molecule tubulin-binding agent, promoting tumor cell death through spindle assembly checkpoint activation, which is currently in Phase 1/2a in advanced solid tumor patients including GBM.
View Article and Find Full Text PDFHighly water-soluble, nontoxic organic nanoparticles on which paclitaxel (PTX), a hydrophobic anticancer drug, has been covalently bound via an ester linkage (4.5% of total weight) have been prepared for the treatment of glioblastoma. These soft fluorescent organic nanoparticles (FONPs), obtained from citric acid and diethylenetriamine by microwave-assisted condensation, show suitable size (Ø = 17-30 nm), remarkable solubility in water, softness as well as strong blue fluorescence in an aqueous environment that are fully retained in cell culture medium.
View Article and Find Full Text PDFCapable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model.
View Article and Find Full Text PDFPreviously, we described alkoxyamines bearing a pyridine ring as new pro-drugs with low molecular weights and theranostic activity. Upon chemical stimulus, alkoxyamines undergo homolysis and release free radicals, which can, reportedly, enhance magnetic resonance imaging and trigger cancer cell death. In the present study, we describe the synthesis and the anti-cancer activity of sixteen novel alkoxyamines that contain an imidazole ring.
View Article and Find Full Text PDF