Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity.
View Article and Find Full Text PDFDeep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity.
View Article and Find Full Text PDFWhich population factors have predisposed people to disregard government safety guidelines during the COVID-19 pandemic and what justifications do they give for this non-compliance? To address these questions, we analyse fixed-choice and free-text responses to survey questions about compliance and government handling of the pandemic, collected from tens of thousands of members of the UK public at three 6-monthly timepoints. We report that sceptical opinions about the government and mainstream-media narrative, especially as pertaining to justification for guidelines, significantly predict non-compliance. However, free text topic modelling shows that such opinions are diverse, spanning from scepticism about government competence and self-interest to full-blown conspiracy theories, and covary in prevalence with sociodemographic variables.
View Article and Find Full Text PDFSwitching is a difficult cognitive process characterised by costs in task performance; specifically, slowed responses and reduced accuracy. It is associated with the recruitment of a large coalition of task-positive regions including those referred to as the multiple demand cortex (MDC). The neural correlates of switching not only include the MDC, but occasionally the default mode network (DMN), a characteristically task-negative network.
View Article and Find Full Text PDF