Publications by authors named "D Kuppuswamy"

The caveolin-1 scaffolding domain (CSD, amino acids 82-101 of caveolin-1) has been shown to suppress bleomycin-induced lung and skin fibrosis and angiotensin II (AngII)-induced myocardial fibrosis. To identify active subregions within CSD, we split its sequence into three slightly overlapping 8-amino acid subregions (82-89, 88-95, and 94-101). Interestingly, all three peptides showed activity.

View Article and Find Full Text PDF

Aging is a progressive, multifactorial, degenerative process in which deleterious changes occur in the biochemistry and function of organs. We showed that angiotensin II (AngII)-induced pathologies in the heart and kidney of young (3-month-old) mice are suppressed by the caveolin-1 scaffolding domain (CSD) peptide. Because AngII mediates many aging-associated changes, we explored whether CSD could reverse pre-existing pathologies and improve organ function in aged mice.

View Article and Find Full Text PDF

Background: Community acquired urinary tract infections (CA-UTI) caused by extended spectrum beta lactamase (ESBL) producing organisms is on the rise throughout the world. There are known risk factors such as age <1 year, children on uroprophylaxis, recurrent UTI, recent antibiotic usage etc which can predict the occurrence of these ESBL producers.

Objectives: To correlate known risk factors with occurrence of ESBL UTI and antibiotic susceptibility of uropathogens isolated.

View Article and Find Full Text PDF

Dysregulation of the renin-angiotensin system leads to systemic hypertension and maladaptive fibrosis in various organs. We showed recently that myocardial fibrosis and the loss of cardiac function in mice with transverse aortic constriction (TAC) could be averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we used angiotensin II (AngII) infusion (2.

View Article and Find Full Text PDF

Developing a biodegradable scaffold remains a major challenge in bone tissue engineering. This study was aimed at developing novel alginate-chitosan-collagen (SA-CS-Col)-based composite scaffolds consisting of graphene oxide (GO) to enrich porous structures, elicited by the freeze-drying technique. To characterize porosity, water absorption, and compressive modulus, GO scaffolds (SA-CS-Col-GO) were prepared with and without Ca-mediated crosslinking (chemical crosslinking) and analyzed using Raman, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy techniques.

View Article and Find Full Text PDF