Organisms can learn in response to environmental inputs as well as actively modify their environments through niche construction on slower evolutionary time scales. How quickly should an organism respond to a changing environment, and when possible, should organisms adjust the time scale of environmental change? We formulate these questions using a model of learning costs that considers optimal time scales of both memory and environment. We derive a general, sublinear scaling law for optimal memory as a function of environmental persistence.
View Article and Find Full Text PDFComplex phenomena are made possible when: (i) fundamental physical symmetries are broken and (ii) from the set of broken symmetries historically selected ground states are applied to performing mechanical work and storing adaptive information. Over the course of several decades Philip Anderson enumerated several key principles that can follow from broken symmetry in complex systems. These include emergence, frustrated random functions, autonomy and generalized rigidity.
View Article and Find Full Text PDFWe survey a current, heated debate in the artificial intelligence (AI) research community on whether large pretrained language models can be said to understand language-and the physical and social situations language encodes-in any humanlike sense. We describe arguments that have been made for and against such understanding and key questions for the broader sciences of intelligence that have arisen in light of these arguments. We contend that an extended science of intelligence can be developed that will provide insight into distinct modes of understanding, their strengths and limitations, and the challenge of integrating diverse forms of cognition.
View Article and Find Full Text PDFInstitutions have been described as 'the humanly devised constraints that structure political, economic, and social interactions.' This broad definition of institutions spans social norms, laws, companies, and even scientific theories. We describe a non-equilibrium, multi-scale learning framework supporting institutional quasi-stationarity, periodicity, and switching.
View Article and Find Full Text PDFWe argue for multiple forms of life realized through multiple different historical pathways. From this perspective, there have been multiple origins of life on Earth-life is not a universal homology. By broadening the class of originations, we significantly expand the data set for searching for life.
View Article and Find Full Text PDF