Plastic consumption and its end-of-life management pose a significant environmental footprint and are energy intensive. Waste-to-resources and prevention strategies have been promoted widely in Europe as countermeasures; however, their effectiveness remains uncertain. This study aims to uncover the environmental footprint patterns of the plastics value chain in the European Union Member States (EU-27) through exploratory data analysis with dimension reduction and grouping.
View Article and Find Full Text PDFModern artificial intelligence (AI) approaches mainly rely on neural network (NN) or deep NN methodologies. However, these approaches require large amounts of data to train, given, that the number of their trainable parameters has a polynomial relationship to their neuron counts. This property renders deep NNs challenging to apply in fields operating with small, albeit representative datasets such as healthcare.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2023
Background: Cancer is a leading cause of death worldwide. While routine diagnosis of cancer is performed mainly with biopsy sampling, it is suboptimal to accurately characterize tumor heterogeneity. Positron emission tomography (PET)-driven radiomic research has demonstrated promising results when predicting clinical endpoints.
View Article and Find Full Text PDFIntroduction: Amino-acid positron emission tomography (PET) is a validated metabolic imaging approach for the diagnostic work-up of gliomas. This study aimed to evaluate sex-specific radiomic characteristics of L-[S-methyl-Cmethionine (MET)-PET images of glioma patients in consideration of the prognostically relevant biomarker isocitrate dehydrogenase (IDH) mutation status.
Methods: MET-PET of 35 astrocytic gliomas (13 females, mean age 41 ± 13 yrs.
Background: Hybrid imaging became an instrumental part of medical imaging, particularly cancer imaging processes in clinical routine. To date, several radiomic and machine learning studies investigated the feasibility of in vivo tumor characterization with variable outcomes. This study aims to investigate the effect of recently proposed fuzzy radiomics and compare its predictive performance to conventional radiomics in cancer imaging cohorts.
View Article and Find Full Text PDF