Publications by authors named "D Korthaus"

The laboratory mouse is the most used animal model in biomedical research. Several artificial reproductive techniques, such as revitalization of cryopreserved strains, rederivation after hygienic contaminations and the production of transgenic mouse models, require the transfer of preimplantation embryos to surrogate mothers. Pseudopregnancy is essential in recipient females and is induced by mating with sterile males.

View Article and Find Full Text PDF

Chemical random mutagenesis techniques with the germ line supermutagen N-ethyl-N-nitrosourea (ENU) have been established to provide comprehensive collections of mouse models, which were then mined and analyzed in phenotype-driven studies. Here, we applied ENU mutagenesis in a high-throughput fashion for a gene-driven identification of new mutations. Selected members of the large superfamily of G protein-coupled receptors (GPCR), melanocortin type 3 (Mc3r) and type 4 (Mc4r) receptors, and the orphan chemoattractant receptor GPR33, were used as model targets to prove the feasibility of this approach.

View Article and Find Full Text PDF

Mice with targeted genetic alterations are the most effective tools for deciphering organismal gene function. We generated an ENU-based parallel C3HeB/FeJ sperm and DNA archive characterized by a high probability to identify allelic variants of target genes as well as high efficiencies in allele retrieval and model revitalization. Our archive size of over 17,000 samples contains approximately 340,000 independent alleles (20 functional mutations per individual sample).

View Article and Find Full Text PDF

Reduced Coat 2 (Rco2) is an ENU-induced mutation affecting hair follicle morphogenesis by an abnormal and protracted catagen. We describe chromosomal mapping and molecular identification of the autosomal dominant Rco2 mutation. The Rco2 critical region on mouse chromosome 11 encompasses the alopecia loci, Bareskin (Bsk), Rex-denuded (Re(den)), Recombination induced mutation 3 (Rim3), and Defolliculated (Dfl).

View Article and Find Full Text PDF

The SMA1-mouse is a novel ethyl-nitroso-urea (ENU)-induced mouse mutant that carries an a-->g missense mutation in exon 5 of the GH gene, which translates to a D167G amino acid exchange in the mature protein. Mice carrying the mutation are characterized by dwarfism, predominantly due to the reduction (sma1/+) or absence (sma1/sma1) of the GH-mediated peripubertal growth spurt, with sma1/+ mice displaying a less pronounced phenotype. All genotypes are viable and fertile, and the mode of inheritance is in accordance with a semidominant Mendelian trait.

View Article and Find Full Text PDF