Publications by authors named "D Klionsky"

Graves disease (GD), an autoimmune disease affects the thyroid gland, results in hyperthyroidisms and goiter. The main cause of GD is not clearly defined; however, stimulating autoantibodies for thyroid stimulating hormone receptor (TSHR) known as thyroid-stimulating immunoglobulins (TSIs) are the primary proposed mechanism. The TSI activation of TSHRs of thyroid gland results in excessive release of thyroid hormones with the subsequent development of hyperthyroidism and goiter.

View Article and Find Full Text PDF

The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease associated with the development of dementia. The hallmarks of AD neuropathology are accumulations of amyloid peptide (Aβ) and neurofibrillary tangles (NFTs). Aβ is derived from the processing of APP (amyloid beta precursor protein) by BACE1 (beta-secretase 1) and γ-secretase through an amyloidogenic pathway.

View Article and Find Full Text PDF

Lipophagy is a selective type of autophagy where lipid droplets are targeted to the lysosome/vacuole for degradation. Even though lipophagy has been reported in various species, many questions remain unaddressed. How are the lipid droplets sequestered to the lysosome? What is the lipophagy receptor? How is this receptor regulated at a posttranslational level? A new collaborative study among several universities conducted on mouse and human hepatocytes sheds light on these questions, deciphering the lipophagy mechanism in the liver.

View Article and Find Full Text PDF

Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective approach to manipulating autophagy, with ongoing debates about whether its inhibition or stimulation is preferable for managing these complex conditions.

View Article and Find Full Text PDF