Publications by authors named "D Kikelj"

We mapped the hydrophobic floor, an interesting subsite at the active site of DNA gyrase B (GyrB) from . We synthesized three new compounds with pendant groups targeting the hydrophobic floor and evaluated their inhibitory activities on DNA gyrase. A new benzothiazole derivative with a benzyl substituent at position 3 of the benzothiazole ring exhibited strong inhibitory activity against DNA gyrase (IC = 19 ± 3 nM).

View Article and Find Full Text PDF

This study presents the discovery of a new series of -phenylpyrrolamide inhibitors of bacterial DNA gyrase with improved antibacterial activity. The most potent inhibitors had low nanomolar IC values against DNA gyrase (IC; 2-20 nM) and topoisomerase IV (22i, IC = 143 nM). Importantly, none of the compounds showed activity against human DNA topoisomerase IIα, indicating selectivity for bacterial targets.

View Article and Find Full Text PDF

In this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • * Compound 51 is a powerful DNA gyrase inhibitor with a very low inhibitory concentration (IC) for M. tuberculosis, showing selectivity for bacterial topoisomerases and minimal toxicity.
  • * Compound 49 has strong antimycobacterial activity and good solubility, indicating the potential to develop targeted treatments for mycobacterial infections while reducing resistance risks and preserving healthy microbiomes.
View Article and Find Full Text PDF

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E.

View Article and Find Full Text PDF