ACS Appl Mater Interfaces
December 2024
Flexible thermoelectric devices offer huge potential for wearable electronics due to their ability to generate green energy by using low-grade heat. However, achieving both high thermoelectric performance and flexibility simultaneously remains a challenge for these devices. Here, we present a simple and cost-effective method for fabricating a high-performance flexible inorganic-organic thermoelectric film by depositing AgSe on a porous nylon membrane.
View Article and Find Full Text PDFTo conduct a systematic review and meta-analysis comparing the functional and radiological outcomes in cervical spondylotic myelopathy (CSM) when treated by Laminectomy (LC) vs. laminectomy with instrumented fusion (LCF). The systematic review was conducted in accordance with PRISMA guidelines.
View Article and Find Full Text PDFStimuli-responsive polymers have gained significant research interest in recent years owing to their potential applications in diverse areas. Here, we present a study on the actuation characteristics of chitosan-based free-standing films that exhibit full reversibility and repeatability in response to water vapor exposure. The effect of pH of the water and the degree of cross-linking of the chitosan films on the actuation performance is studied.
View Article and Find Full Text PDFUniform distribution of particles and crack suppression in dried particulate deposits are major challenges for applications in coating and printing technologies. To address this, we investigated the impact of the addition of a water-soluble polymer, poly(vinyl alcohol) (PVA), on the evaporative self-assembly and kinetics of crack formation in deposits of anisotropic colloids. The fluid flow inside the drying drop is significantly altered due to polymer-mediated adsorption of ellipsoids to the drop surface.
View Article and Find Full Text PDFColloidal monolayers serve as fundamental building blocks in fabricating diverse functional materials, pivotal for surface modifications, chemical reactivity, and controlled assembly of nanoparticles. In this article, we report the formation of colloidal monolayers generated by drying an aqueous droplet containing soft colloids confined between two hydrophilic parallel plates. The analysis of the kinetics of evaporation in this confined mode showed that: (i) for a significant portion of the drying time, the drops adopt a catenoid configuration; (ii) in the penultimate stage of drying, the catenoid structure undergoes division into two daughter droplets; (iii) the three-phase contact line remains pinned at a specific location while it continuously slips at all other locations.
View Article and Find Full Text PDF