Publications by authors named "D K Lukyanov"

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

Macrolactin A (McA) is a secondary metabolite produced by Bacillus species. It has been known for its antimicrobial properties since the late 1980s, although the exact mechanism of its antibacterial activity remains unknown. In this study, we have found that McA is an inhibitor of protein synthesis in bacteria.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) plays a central role in energy conversion and storage technologies. A promising alternative to precious metal catalysts are non-precious metal doped carbons. Considerable efforts have been devoted to cobalt-doped carbonized polyacrylonitrile catalysts, but the optimization of their catalytic performance remains a key challenge.

View Article and Find Full Text PDF

Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation.

View Article and Find Full Text PDF

Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS).

View Article and Find Full Text PDF