Publications by authors named "D K Grella"

Fluorescently labeled bacterial cells have become indispensable for many aspects of microbiological research, including studies on biofilm formation as an important virulence factor of various opportunistic bacteria of environmental origin such as Stenotrophomonas maltophilia. Using a Tn-based genomic integration system, we report the construction of improved mini-Tn delivery plasmids for labeling of S. maltophilia with sfGFP, mCherry, tdTomato and mKate2 by expressing their codon-optimized genes from a strong, constitutive promoter and an optimized ribosomal binding site.

View Article and Find Full Text PDF

Recently, we showed that localization of Glu-plasminogen on cell surfaces enhances its conversion to Lys-plasminogen by exogenous plasmin. This leads to stimulation of plasminogen activation because Lys-plasminogen is the preferred substrate on cell surfaces. Here, we show that Glu-plasminogen was converted to Lys-plasminogen on monocytoid cells in the absence of exogenous plasmin.

View Article and Find Full Text PDF

Background: Prostate specific antigen (PSA) is a kallikrein family member with serine protease activity commonly used as a diagnostic marker for prostate cancer. We recently described anti-angiogenic properties of PSA [Fortier et al.: JNCI 91:1635-1640].

View Article and Find Full Text PDF

Angiogenesis inhibitors have gained much public attention recently as anti-cancer agents and several are currently in clinical trials, including angiostatin (Phase I, Thomas Jefferson University Hospital, Philadelphia, PA). We report here the bowl-shaped structure of angiostatin kringles 1-3, the first multi-kringle structure to be determined. All three kringle lysine-binding sites contain a bound bicine molecule of crystallization while the former of kringle 2 and kringle 3 are cofacial.

View Article and Find Full Text PDF

When Glu-plasminogen is bound to cells, plasmin (Pm) formation by plasminogen (Pg) activators is markedly enhanced compared with the reaction in solution. It is not known whether the direct activation of Glu-Pg by Pg activators is promoted on the cell surface or whether plasminolytic conversion of Glu-Pg to the more readily activated Lys-Pg is necessary for enhanced Pm formation on the cell surface. To distinguish between these potential mechanisms, we tested whether Pm formation on the cell surface could be stimulated in the absence of conversion of Glu-Pg to Lys-Pg.

View Article and Find Full Text PDF