Introduction: Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance.
Methods: To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA).
Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Aims: Women with previous gestational diabetes mellitus (GDM) have an increased risk for later development of type 2 diabetes. During pregnancy, GDM affects the cardio-metabolic protein profile; however, it is unknown how GDM affects the cardio-metabolic protein profile in the long term and if it is associated with type 2 diabetes after GDM. We hypothesise that the cardio-metabolic protein profile is affected long term and is associated with the development of type 2 diabetes after GDM.
View Article and Find Full Text PDFBackground: Exertional breathlessness is a key symptom in cardiorespiratory disease and can be quantified using incremental exercise testing, but its prognostic significance is unknown. We evaluated the ability of abnormally high breathlessness intensity during incremental cycle exercise testing to predict all-cause, respiratory, and cardiac mortality.
Study Design And Methods: Longitudinal cohort study of adults referred for exercise testing followed prospectively for mortality assessed using the Swedish National Causes of Death Registry.
Disturbances in the brain fluid balance can lead to life-threatening elevation in intracranial pressure (ICP), which represents a vast clinical challenge. Targeted and efficient pharmaceutical therapy of elevated ICP is not currently available, as the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved. To resolve the quantitative contribution of key choroid plexus transport proteins, this study employs mice with genetic knockout and/or viral choroid plexus-specific knockdown of aquaporin 1 (AQP1) and the Na, K, 2Cl cotransporter 1 (NKCC1) for in vivo determinations of CSF dynamics, ex vivo choroid plexus for transporter-mediated clearance of a CSF K load, and patient CSF for [K] quantification.
View Article and Find Full Text PDF