Publications by authors named "D Junghans"

Calponin 3 (Cnn3) is a member of the Cnn family of actin-binding molecules that is highly expressed in the mammalian brain and has been shown to control dendritic spine morphology, density, and plasticity by regulating actin cytoskeletal reorganization and dynamics. However, little is known about the role of Cnn3 during embryonic development. In this study, we analyzed mutant animals deficient in Cnn3 to gain a better understanding of its role in brain morphogenesis.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is required for embryonic stem cell (ESC) pluripotency by inducing mesodermal differentiation and inhibiting neuronal differentiation; however, how β-catenin counter-regulates these differentiation pathways is unknown. Here, we show that lysine 49 (K49) of β-catenin is trimethylated (β-catMe3) by Ezh2 or acetylated (β-catAc) by Cbp. Significantly, β-catMe3 acts as a transcriptional co-repressor of the neuronal differentiation genes sox1 and sox3, whereas β-catAc acts as a transcriptional co-activator of the key mesodermal differentiation gene t-brachyury (t-bra).

View Article and Find Full Text PDF

Kainate receptors mediate glutamatergic signaling through both pre- and presynaptic receptors. Here, we studied the expression of the high affinity kainate receptor GluK5 in the mouse retina. Double-immunofluoresence labeling and electron microscopic analysis revealed a presynaptic localization of GluK5 in the outer plexiform layer.

View Article and Find Full Text PDF

β-Catenin mediated Wnt-signaling is assumed to play a major function in embryonic stem cells in maintaining their stem cell character and the exit from this unique trait. The complexity of β-catenin action and conflicting results on the role of β-catenin in maintaining the pluripotent state have made it difficult to understand its precise cellular and molecular functions. To attempt this issue we have generated new genetically modified mouse embryonic stem cell lines allowing for the deletion of β-catenin in a controlled manner by taking advantage of the Cre-ER-T2 system and analyzed the effects in a narrow time window shortly after ablation.

View Article and Find Full Text PDF

One pathway regulating the migration of neurons during development of the mammalian cortex involves the extracellular matrix protein Reelin. Reelin and components of its signaling cascade, the lipoprotein receptors ApoER2 and Vldlr and the intracellular adapter protein Dab1 are pivotal for a correct layer formation during corticogenesis. The olfactory bulb (OB) as a phylogenetically old cortical region is known to be a prominent site of Reelin expression.

View Article and Find Full Text PDF