Publications by authors named "D Jourd'heuil"

Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes.

View Article and Find Full Text PDF

It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3.

View Article and Find Full Text PDF

Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying new regulators of vascular smooth muscle cell function is key to understanding cardiovascular diseases; the study focuses on cytoglobin, a hemoglobin-like protein with unique roles in blood vessel health.
  • Research found that when cytoglobin was deleted in mice, there was a quicker loss of contractile genes and increased DNA damage in injured carotid arteries.
  • The study revealed that cytoglobin moves into the nucleus of vascular smooth muscle cells, where it interacts with a chromatin protein called HMGB2, potentially regulating gene expression and protecting against DNA damage.
View Article and Find Full Text PDF
Article Synopsis
  • Identifying new regulators of vascular smooth muscle cell function is crucial for understanding cardiovascular diseases, and cytoglobin has been found to play important roles in this area.
  • Studies show that when cytoglobin is deleted, it leads to quicker loss of contractile genes and increased DNA damage in injured carotid arteries.
  • The research reveals that cytoglobin moves into the nucleus of vascular smooth muscle cells, interacting with the protein HMGB2 to help prevent DNA damage and regulate gene activity in the vascular system.
View Article and Find Full Text PDF