Publications by authors named "D Jennen"

Article Synopsis
  • Gene expression biomarkers can help identify both genotoxic and non-genotoxic carcinogens, which could reduce the need for animal testing.
  • In August 2022, a workshop reviewed current methods for using transcriptomic profiling to detect genotoxic chemicals, examining 1341 papers to find reliable biomarkers.
  • The analysis identified two promising in vivo biomarkers and three in vitro biomarkers that show over 92% predictive accuracy and can be adapted for various testing conditions, with support from workshop participants for their regulatory adoption.
View Article and Find Full Text PDF

As a part of the International Workshop on Genotoxicity Testing (IWGT) in 2022, a workgroup was formed to evaluate the level of validation and regulatory acceptance of transcriptomic biomarkers that identify genotoxic substances. Several such biomarkers have been developed using various molecular techniques and computational approaches. Within the IWGT workgroup on transcriptomic biomarkers, bioinformatics was a central topic of discussion, focusing on the current approaches used to process the underlying molecular data to distill a reliable predictive signal; that is, a gene set that is indicative of genotoxicity and can then be used in later studies to predict potential DNA damaging properties for uncharacterized chemicals.

View Article and Find Full Text PDF

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles.

View Article and Find Full Text PDF

The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug.

View Article and Find Full Text PDF