Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development.
View Article and Find Full Text PDFClass A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02.
View Article and Find Full Text PDFPlasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats).
View Article and Find Full Text PDFThe zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important.
View Article and Find Full Text PDFThe facile synthesis of seven new dicationic tripeptide benzyl ester derivatives, with hydrophobic group variations in the C-terminal amino acid component, is described. Moderate to good activity was seen against Gram-positive bacteria in vitro. One cyclohexyl-substituted compound 2c was tested more widely and showed good potency (MIC values ranging from 2-4 μg/mL) against antibiotic-resistant strains of Staphylococcus aureus and Enterococci (VRE, VSE), and against Staphylococcus epidermidis.
View Article and Find Full Text PDF