Publications by authors named "D Janczewski"

One of the promising candidates for new antimicrobial agents is membrane-lytic compounds that kill microbes through cell membrane permeabilization, such as antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs). Although SMAMPs have been under investigation for nearly 30 years, a few challenges must be addressed before they can reach clinical use. In this work, a step-growth polymerization leading to already-known highly antimicrobial ionenes was redirected toward the formation of macrocyclic quaternary ammonium salts (MQAs) employing a high dilution principle.

View Article and Find Full Text PDF

Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated.

View Article and Find Full Text PDF

Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity.

View Article and Find Full Text PDF

Cationic polymers have been extensively investigated as a potential replacement for traditional antibiotics. Here, we examined the effect of molecular weight (MW) on the antimicrobial, cytotoxic, and hemolytic activity of linear polytrimethylenimine (L-PTMI). The results indicate that the biological activity of the polymer sharply increases as MW increases.

View Article and Find Full Text PDF

The spread of antibiotic-resistant pathogens and the resurgence of tuberculosis disease are major motivations to search for novel antimicrobial agents. Some promising candidates in this respect are cationic polymers, also known as synthetic mimics of antimicrobial peptides (SMAMPs), which act through the membrane-lytic mechanism. Development of resistance toward SMAMPs is less likely than toward currently employed antibiotics; however, further studies are needed to better understand their structure-activity relationship.

View Article and Find Full Text PDF