Publications by authors named "D James Koropatnick"

In light of the continuing need for effective anticancer agents, and the association of fruit and vegetable consumption with reduced cancer risk, edible plants are increasingly being considered as sources of anticancer drugs. Cranberry presscake (the material remaining after squeezing juice from the berries), when fed to mice bearing human breast tumor MDA-MB-435 cells, was shown previously to decrease the growth and metastasis of tumors. Therefore, further studies were undertaken to isolate the components of cranberry that contributed to this anticancer activity, and determine the mechanisms by which they inhibited proliferation.

View Article and Find Full Text PDF

Thymidylate synthase (TS) catalyzes de novo production of thymidylate for DNA synthesis and cell proliferation. As such, TS has been a target of antitumor chemotherapy for many years. Our laboratory has identified several antisense oligodeoxynucleotides (ODNs) that downregulate TS mRNA and protein, inhibit cell proliferation, and sensitize cells to TS-directed chemotherapeutic drugs.

View Article and Find Full Text PDF

Chemotherapeutic agents targeting thymidylate synthase (TS) are effective against human tumors. Efficacy is limited by drug resistance, often mediated by TS overexpression. Treatment of HeLa cells in vitro with an antisense oligodeoxynucleotide (ODN 83) targeting human TS mRNA reduces TS mRNA and protein levels, inhibits cell proliferation, and sensitizes cells to TS-targeting drugs (Ferguson et al.

View Article and Find Full Text PDF

A number of heavy metals are known to be essential for life, but most of these can also be toxic to cells under certain circumstances, or at elevated levels. Metals can directly induce gene expression through the actions of metal-responsive transcription factors. However, metals can also influence the response to non-metal extracellular signals.

View Article and Find Full Text PDF

The regional distribution of metallothionein (MT), zinc and copper was measured in brains of transgenic MT-I overexpressor (MT-I*) mice, MT-I/MT-II gene knockout (MT-I/MT-II null) mice, and in brains of control C57BL/6J mice with normal MT expression. Toxic milk (tx) mutant mice with abnormally high MT and copper accumulation were also assessed. Although there were significant differences in MT levels (assessed by a cadmium-binding assay) in whole brain of MT-I/MT-II null and control mice (16.

View Article and Find Full Text PDF