Background Hypertension control is critical to reducing cardiovascular disease, challenging to achieve, and exacerbated by socioeconomic inequities. Few states have established statewide quality improvement (QI) infrastructures to improve blood pressure (BP) control across economically disadvantaged populations. In this study, we aimed to improve BP control by 15% for all Medicaid recipients and by 20% for non-Hispanic Black participants.
View Article and Find Full Text PDFAn investigation was conducted on the phenotypic results of mouse hybridization and seven generations of backcrossing, observing reciprocal F1 hybrids and backcrosses of Mus spretus and a laboratory strain of Mus domesticus C57BL/6J. F1 hybrids, backcrosses, and pure control specimens were measured for 6 body characteristics, 4 pelage coloration characteristics, 14 behaviors, and reproduction as reflected in litter size. Backcrossing was pursued for seven generations to FBC7 (i.
View Article and Find Full Text PDFIn high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved.
View Article and Find Full Text PDFUltrafast infrared nano-imaging has demonstrated access to ultrafast carrier dynamics on the nanoscale in semiconductor, correlated-electron, or polaritonic materials. However, mostly limited to short-lived transient states, the contrast obtained has remained insufficient to probe important long-lived excitations, which arise from many-body interactions induced by strong perturbation among carriers, lattice phonons, or molecular vibrations. Here, we demonstrate ultrafast infrared nano-imaging based on excitation modulation and sideband detection to characterize electron and vibration dynamics with nano- to micro-second lifetimes.
View Article and Find Full Text PDF