Publications by authors named "D J Stolarski"

As solid-state laser technology continues to mature, high-energy lasers operating in the near-infrared (NIR) band have seen increased utilization in manufacturing, medical, and military applications. Formulations of maximum permissible exposure limits establish guidelines for the safe use of these systems for a given set of laser parameters, based on past experimental and analytical studies of exposure thresholds causing injury to the skin and eyes. The purpose of our study is to characterize the skin response to multiple-pulsed laser exposures at the NIR wavelength of 1070 nm, at a constant beam diameter of 1 cm, using anesthetized Yucatan mini-pig subjects.

View Article and Find Full Text PDF

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m.

View Article and Find Full Text PDF

Skin injury response to near-infrared (NIR) laser radiation between the minimum visible lesion threshold and ablation onset is not well understood. This study utilizes a 1070-nm diode-pumped Yb-fiber laser to explore the response of excised porcine skin to high-energy exposures in the suprathreshold injury region without inducing ablation. Concurrent high-speed videography is employed to determine a dichotomous response for three progressive damage categories: observable surface distortion, surface bubble formation due to contained intracutaneous water vaporization, and surface bubble rupture during exposure.

View Article and Find Full Text PDF

We propose a search for Higgs decays with as many as 8 leptons in the final state. This signal can arise in a simple model with a hidden vector (A_{d}) that gets mass via a hidden scalar (h_{d}) vacuum expectation value. The 125 GeV Higgs boson can then decay H→h_{d}h_{d}→4A_{d}→8f, where f are standard model fermions.

View Article and Find Full Text PDF

The ratio of the Higgs couplings to WW and ZZ pairs, λ_{WZ}, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level or one-loop interference effects, to both the magnitude and, in particular, overall sign of λ_{WZ}. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information.

View Article and Find Full Text PDF