Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization.
View Article and Find Full Text PDFResearch-based courses are a powerful way to engage undergraduates in the scientific process while simultaneously teaching participants relevant laboratory, analysis, and scientific communication skills. In most programs, students conduct a simulated project which effectively improves student conceptions of scientific thinking but does not produce research-quality data. The course described here delivered an authentic research experience by assigning undergraduates an objective from an active grant-funded project.
View Article and Find Full Text PDFThe described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems.
View Article and Find Full Text PDFNASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The team has developed the μTitan (simulated micro() gravity ested nsrument for utomated ucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity.
View Article and Find Full Text PDFAims: Development of biomineralization technologies has largely focused on microbially induced carbonate precipitation (MICP) via Sporosarcina pasteurii ureolysis; however, as an obligate aerobe, the general utility of this organism is limited. Here, facultative and anaerobic haloalkaliphiles capable of ureolysis were enriched, identified and then compared to S. pasteurii regarding biomineralization activities.
View Article and Find Full Text PDF