The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid () and the bird cherry-oat aphid (), and examine how diversity in vector populations influences virus transmission efficiency.
View Article and Find Full Text PDFEntomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).A list of 710 challenges was gathered from 189 RES members.
View Article and Find Full Text PDFPeach-potato aphids, Sulzer (Hemiptera:Aphididae), and cabbage aphids, Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts.
View Article and Find Full Text PDFAphids are important herbivorous insects that can cause significant crop damage, leading to yield reduction and economic loss. One avenue being explored to reduce aphid impacts is the development of aphid-resistant plants. Under projected climate scenarios, it is expected that plants will be exposed to greater biotic and abiotic stress, including increased herbivorous insect infestation and exposure to prolonged periods of environmental stress, particularly drought.
View Article and Find Full Text PDFDespite their abundance and economic importance, the mechanism of plant resistance to sap-feeding insects remains poorly understood. Here we deploy meta-analysis and data synthesis methods to evaluate the results from electrophysiological studies describing feeding behaviour experiments where resistance mechanisms were identified, focussing on studies describing host-plant resistance and non-host resistance mechanisms. Data were extracted from 108 studies, comprising 41 insect species across eight insect taxa and 12 host-plant families representing over 30 species.
View Article and Find Full Text PDF