Publications by authors named "D J J van Hinsbergen"

The India-Asia collision zone is the archetype to calibrate geological responses to continent-continent collision, but hosts a paradox: there is no orogen-wide geological record of oceanic subduction after initial collision around 60-55 Ma, yet thousands of kilometers of post-collisional subduction occurred before the arrival of unsubductable continental lithosphere that currently horizontally underlies Tibet. Kinematically restoring incipient horizontal underthrusting accurately predicts geologically estimated diachronous slab break-off, unlocking the Miocene of Himalaya-Tibet as a natural laboratory for unsubductable lithosphere convergence. Additionally, three endmember paleogeographic scenarios exist with different predictions for the nature of post-collisional subducted lithosphere but each is defended and challenged based on similar data types.

View Article and Find Full Text PDF

Intriguing latest Eocene land-faunal dispersals between South America and the Greater Antilles (northern Caribbean) has inspired the hypothesis of the GAARlandia (Greater Antilles Aves Ridge) land bridge. This landbridge, however, should have crossed the Caribbean oceanic plate, and the geological evolution of its rise and demise, or its geodynamic forcing, remain unknown. Here we present the results of a land-sea survey from the northeast Caribbean plate, combined with chronostratigraphic data, revealing a regional episode of mid to late Eocene, trench-normal, E-W shortening and crustal thickening by ∼25%.

View Article and Find Full Text PDF

We present an extensive study of rehomogenized olivine-hosted melt inclusions, olivine phenocrysts, and chromian spinel inclusions to explore the link between geodynamic conditions and the origin and composition of Pliocene-Quaternary intraplate magmatism in Anatolia at Kula, Ceyhan-Osmaniye, and Karacadağ. Exceptional compositional variability of these products reveals early and incomplete mixing of distinct parental melts in each volcanic center, reflecting asthenospheric and lithospheric mantle sources. The studied primitive magmas consist of (1) two variably enriched ocean island basalt (OIB)-type melts in Kula; (2) both OIB-type and plume mid-ocean ridge basalt (P-MORB)-like melts beneath Toprakkale and Üçtepeler (Ceyhan-Osmaniye); and (3) two variably enriched OIB-type melts beneath Karacadağ.

View Article and Find Full Text PDF