40 years of research on low-frequency (LF) noise and random-telegraph noise (RTN) in metallic and semiconducting nanowires (NWs) demonstrate the importance of defects and impurities to each system. The fluctuating interference of electrons in the local environment of a mobile bulk defect or impurity can lead to LF noise, RTN, and device-to-device variations in metallic and semiconducting NWs. Scattering centers leading to mobility fluctuations in semiconducting NWs include random dopant atoms and bulk defect clusters.
View Article and Find Full Text PDFspecies form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. VelA is a key global regulator in fungal secondary metabolism and development.
View Article and Find Full Text PDFSilicon photonics is considered to be an ideal solution as optical interconnect in radiation environments. Our previous study has demonstrated experimentally that radiation responses of device are related to waveguide size, and devices with thick top silicon waveguide layers are expected to be less sensitive to irradiation. Here, we design radiation-resistant arrayed waveguide gratings and Mach-Zehnder interferometers based on silicon-on-insulator with 3 µm-thick silicon optical waveguide platform.
View Article and Find Full Text PDFIn this work, the radiation responses of silicon photonic passive devices built in silicon-on-insulator (SOI) technology are investigated through high energy neutron and Co γ-ray irradiation. The wavelengths of both micro-ring resonators (MRRs) and Mach-Zehnder interferometers (MZIs) exhibit blue shifts after high-energy neutron irradiation to a fluence of 1×10 n/cm; the blue shift is smaller in MZI devices than in MRRs due to different waveguide widths. Devices with SiO upper cladding layer show strong tolerance to irradiation.
View Article and Find Full Text PDFspecies form agriculturally important symbioses with many cool season grasses. To study these symbioses, such as the interaction of with perennial ryegrass (, host plants can be infected by artificial inoculation of etiolated seedlings. This inoculation is performed by placing mycelium into an incision in the meristem, as previously described by Latch and Christensen (1985).
View Article and Find Full Text PDF