Publications by authors named "D J Crichton"

Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve the understanding and use of novel biomarkers such as glycans and glycoconjugates.

View Article and Find Full Text PDF

NASA's Jet Propulsion Laboratory (JPL) is advancing research capabilities for data science with two of the National Cancer Institute's major research programs, the Early Detection Research Network (EDRN) and the Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), by enabling data-driven discovery for cancer biomarker research. The research team pioneered a national data science ecosystem for cancer biomarker research to capture, process, manage, share, and analyze data across multiple research centers. By collaborating on software and data-driven methods developed for space and earth science research, the biomarker research community is heavily leveraging similar capabilities to support the data and computational demands to analyze research data.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a formidable challenge for patients and clinicians.

Objective: To analyze the distribution of 31 different markers in tumor and stromal portions of the tumor microenvironment (TME) and identify immune cell populations to better understand how neoplastic, non-malignant structural, and immune cells, diversify the TME and influence PDAC progression.

Methods: Whole slide imaging (WSI) and cyclic multiplexed-immunofluorescence (MxIF) was used to collect 31 different markers over the course of nine distinctive imaging series of human PDAC samples.

View Article and Find Full Text PDF

Cancer biomarker research has become a data-intensive discipline requiring innovative approaches for data analysis that can combine traditional and data-driven methods. Significant leveraging can be done transferring methodologies and capabilities across scientific disciplines, such as planetary science and astronomy, each of which are grappling with and developing similar solutions for the analysis of massive scientific data.

View Article and Find Full Text PDF