Publications by authors named "D J Bowden"

Vulnerable Marine Ecosystems (VMEs) are recognised as having high ecological significance and susceptibility to disturbances, including climate change. One approach to providing information on the location and biological composition of these ecosystems, especially in difficult-to-reach environments such as the deep sea, is to generate spatial predictions for VME indicator taxa. In this study, the Random Forest algorithm was used to model the spatial distribution of density for 14 deep-water VME indicator taxa under current environmental conditions and future climate change scenarios (SSP2-4.

View Article and Find Full Text PDF

Turbidity flows can transport massive amounts of sediment across large distances with dramatic, long-lasting impacts on deep-sea benthic communities. The 2016 M 7.8 Kaikōura Earthquake triggered a canyon-flushing event in Kaikōura Canyon, New Zealand, which included significant submarine mass wasting, debris, and turbidity flows.

View Article and Find Full Text PDF

Increasing interest in seabed resource use in the ocean is introducing new pressures on deep-sea environments, the ecological impacts of which need to be evaluated carefully. The complexity of these ecosystems and the lack of comprehensive data pose significant challenges to predicting potential impacts. In this study, we demonstrate the use of Bayesian networks (BNs) as a modeling framework to address these challenges and enhance the development of robust quantitative predictions concerning the effects of human activities on deep-seafloor ecosystems.

View Article and Find Full Text PDF

The incidence and prevalence of syphilis are rising worldwide. Rectal syphilis is a rare condition with few reported cases in the literature and therefore often missed from differential diagnosis of atypical anorectal ulceration. We report a case of a 64-year-old male who presented with change in the bowel habit and a palpable rectal mass on examination.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome sequencing (WGS) helps identify rare genetic variants that may explain the missing heritability of coronary artery disease (CAD) by analyzing 4,949 cases and 17,494 controls from the NHLBI TOPMed program.
  • The study estimates that the heritability of CAD is around 34.3%, with ultra-rare variants contributing about 50%, especially those with low linkage disequilibrium.
  • Functional annotations show significant enrichment of CAD heritability, highlighting the importance of ultra-rare variants and specific regulatory mechanisms in different cells as major factors influencing genetic risk for the disease.
View Article and Find Full Text PDF