Exoinulinases-enzymes extensively studied in recent decades because of their industrial applications-need to be produced in suitable quantities in order to meet production demands. We describe here the production of an acid-stable recombinant inulinase from Aspergillus kawachii in the Pichia pastoris system and the recombinant enzyme's biochemical characteristics and potential application to industrial processes. After an appropriate cloning strategy, this genetically engineered inulinase was successfully overproduced in fed-batch fermentations, reaching up to 840 U/ml after a 72-h cultivation.
View Article and Find Full Text PDFThe pg1 gene from the filamentous fungus Aspergillus kawachii, which codifies for an acid polygalacturonase, was cloned into the pYES2 expression vector, giving rise to the pYES2:pg1ΔI construct. Engineered Saccharomyces cerevisiae, transformed with pYES2:pg1ΔI construct, both expressed and exported an active polygalacturonase with a MW of ~60 kDa and an isoelectric point of 3.7, similar to those reported for the wild-type enzyme.
View Article and Find Full Text PDF