Publications by authors named "D Iu Komkov"

To successfully apply the genome editing technology using the CRISPR/Cas9 system in the clinic, it is necessary to achieve a high efficiency of knock-in, which is insertion of a genetic construct into a given locus of the target cell genome. One of the approaches to increase the efficiency of knock-in is to modify donor DNA with the same Cas9 targeting sites (CTS) that are used to induce double-strand breaks (DSBs) in the cell genome (the double-cut donor method). Another approach is based on introducing truncated CTS (tCTS), including a PAM site and 16 proximal nucleotides, into the donor DNA.

View Article and Find Full Text PDF

The low knock-in efficiency, especially in primary human cells, limits the use of the genome editing technology for therapeutic purposes, rendering it important to develop approaches for increasing the knock-in levels. In this work, the efficiencies of several approaches were studied using a model of knock-in of a construct coding for the peptide HIV fusion inhibitor MT-C34 into the human CXCR4 locus in the CEM/R5 T cell line. First, donor DNA modification was evaluated as a means to improve the efficiency of plasmid transport into the nucleus.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin structure plays a crucial role in determining gene expression and cell identity, especially in neurons, through the action of polycomb group (PcG) proteins.
  • A study mapping the 3D genome in neuronal and non-neuronal cells from the Wernicke's area shows that neurons have less separation between active and inactive gene regions compared to other brain cells.
  • Neuronal cells display unique chromatin interactions, including a specific network of PcG contacts linked to genes that control development, with a distinct pattern of histone modifications that suggest a functional significance of these interactions for neuron identity.
View Article and Find Full Text PDF

Delivery of ribonucleoprotein complexes of Cas9 nuclease and guide RNA into target cells with virus-like particles (VLP) is one of the novel methods of genome editing and is suitable for gene therapy of human diseases in the future. The efficiency of genome editing with VLPs depends on the Cas9 packaging into VLPs, the process mediated by the viral Gag protein. To improve the packaging of Cas9 into NanoMEDIC VLPs, plasmid constructs for Cas9 and Gag expression were modified by adding the HIV Rev response element (RRE), which was expected to increase the nuclear export of RRE-containing transcripts into the cytosol via the Rev accessory protein, as described for a Vpr-Cas9-based VLP system.

View Article and Find Full Text PDF

Gene editing using the CRISPR/Cas9 system provides new opportunities to treat human diseases. Approaches aimed at increasing the efficiency of genome editing are therefore important to develop. To increase the level of editing of the CXCR4 locus, which is a target for gene therapy of HIV infection, the Cas9 protein was modified by introducing additional NLS signals and ribonucleoprotein complexes of Cas9 and guide RNA were stabilized with poly-L-glutamic acid.

View Article and Find Full Text PDF