Publications by authors named "D I C Scopes"

Introduction: Amyloid-β (Aβ) aggregation is thought to be a major pathogenic event underlying the neuropathology of Alzheimer's disease (AD). The development of new drugs inhibiting the Aβ aggregation process is, therefore, important. SEN1500, an orally bioavailable and CNS-penetrant Aβ aggregation inhibitor, has previously been shown to reduce spatial learning and memory deficits in an APP transgenic mouse model.

View Article and Find Full Text PDF

Prefibrillar assembly of amyloid-β (Aβ) is a major event underlying the development of neuropathology and dementia in Alzheimer's disease (AD). This study determined the neuroprotective properties of an orally bioavailable Aβ synaptotoxicity inhibitor, SEN1576. Binding of SEN1576 to monomeric Aβ 1-42 was measured using surface plasmon resonance.

View Article and Find Full Text PDF

In the Alzheimer's disease (AD) brain, accumulation of Aβ1-42 peptides is suggested to initiate a cascade of pathological events. To date, no treatments are available that can reverse or delay AD-related symptoms in patients. In the current study, we introduce a new Aβ toxicity inhibitor, SEN1500, which in addition to its block effect on Aβ1-42 toxicity in synaptophysin assays, can be administered orally and cross the blood-brain barrier without adverse effects in mice.

View Article and Find Full Text PDF

The current study examined behavioral and histological effects of amyloid-β (Aβ) protein precursor (AβPP) overexpression in transgenic (Tg) rats created using the same gene, mutation, and promoter as the Tg2576 mouse model of Alzheimer's disease (AD). Male Tg+ rats were bred with female wild-type rats to generate litters of hemizygous Tg+ and Tg- offspring. Tg+ rats and Tg- littermates were tested for memory deficits at 4, 8, and 12 months old using a water-maze procedure.

View Article and Find Full Text PDF

Oligomers of beta-amyloid (Aβ) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aβ-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aβ monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aβ(1-42).

View Article and Find Full Text PDF