Publications by authors named "D Hunkeler"

Over the last two decades, proliferations of benthic cyanobacteria producing derivatives of anatoxin-a have been reported in rivers worldwide. Here, we follow up on such a toxigenic event happening in the Areuse river in Switzerland and investigate the diversity and genomics of major bloom-forming riverine benthic cyanobacteria. We show, using 16S rRNA-based community profiling, that benthic communities are dominated by Oscillatoriales.

View Article and Find Full Text PDF

Pesticide metabolites are frequently detected in groundwater, often exceeding the concentrations of their parent pesticides. Ceasing the application of certain pesticides has often not led to the expected decrease in metabolite concentrations in groundwater, which is potentially caused by residues in soil. Whereas pesticide residues in soils are well-documented, there are only few studies about metabolite residues.

View Article and Find Full Text PDF

The solvent-based sampling method for collecting gas-phase volatile organic compounds (VOCs) and conducting compound-specific isotope analysis (CSIA) was deployed during a controlled field study. The solvent-based method used methanol as a sink to accumulate petroleum hydrocarbons during the sampling of soil air and effluent gas. For each gaseous sample collected, carbon isotope analysis (δC) was conducted for a selection of five VOCs (benzene, toluene, o-xylene, cyclopentane and octane) emitted by a synthetic hydrocarbon source emplaced in the subsurface.

View Article and Find Full Text PDF

Climate change will have-and, in much of the world, is already having-a pronounced impact on alpine water resources. A deeper understanding of the future role of groundwater in alpine catchments, including quantification of climate change impacts on groundwater discharge, is vital for understanding the future of alpine water resources as a whole. Here, we develop and couple a geophysics-informed groundwater model with a net recharge model to investigate the impacts of climate change on a nival-regime alpine headwater catchment with significant unconfined Quaternary aquifer coverage.

View Article and Find Full Text PDF

Knowledge of groundwater residence times (GRT; the time elapsed since surface water infiltration) between losing rivers and pumping wells is crucial for management of water resources in alluvial aquifers. The radioactive noble gas radon-222 (Rn) has been used for decades as a natural indicator of surface water infiltration, as it can provide quantitative information on GRT. However, models using Rn as a tracer of GRT are often based on a set of highly simplifying assumptions, including spatially homogenous Rn production and exclusively advective mass transport within the aquifer.

View Article and Find Full Text PDF