Machine learning (ML) and artificial intelligence (AI) algorithms are now being used to automate the discovery of physics principles and governing equations from measurement data alone. However, positing a universal physical law from data is challenging without simultaneously proposing an accompanying discrepancy model to account for the inevitable mismatch between theory and measurements. By revisiting the classic problem of modeling falling objects of different size and mass, we highlight a number of nuanced issues that must be addressed by modern data-driven methods for automated physics discovery.
View Article and Find Full Text PDFHuman mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike.
View Article and Find Full Text PDFProphylactic interventions such as vaccine allocation are some of the most effective public health policy planning tools. The supply of vaccines, however, is limited and an important challenge is to optimally allocate the vaccines to minimize epidemic impact. This resource allocation question (which we refer to as VaccIntDesign) has multiple dimensions: when, where, to whom, etc.
View Article and Find Full Text PDFSeasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts.
View Article and Find Full Text PDFProducing timely, well-informed and reliable forecasts for an ongoing epidemic of an emerging infectious disease is a huge challenge. Epidemiologists and policy makers have to deal with poor data quality, limited understanding of the disease dynamics, rapidly changing social environment and the uncertainty on effects of various interventions in place. Under this setting, detailed computational models provide a comprehensive framework for integrating diverse data sources into a well-defined model of disease dynamics and social behavior, potentially leading to better understanding and actions.
View Article and Find Full Text PDF