Publications by authors named "D Heydeck"

Eicosanoids and related compounds are pleiotropic lipid mediators, which play a role in cell differentiation and in the pathogenesis of various diseases. The biosynthesis of these lipids has extensively been studied in highly developed mammals including humans but little is known about the formation of these mediators in more ancient Prototheria. We searched the genomes of two extant prototherian species (platypus, short-beaked echidna) for genes encoding for lipoxygenase- (ALOX) and prostaglandin synthase-isoforms (PTGS) and detected intact single copy genes for ALOX5, ALOX12, ALOX12B, ALOXE3, PTGS1 and PTGS2.

View Article and Find Full Text PDF

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics.

View Article and Find Full Text PDF

The human genome involves six functional arachidonic acid lipoxygenase () genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (, , ).

View Article and Find Full Text PDF

Background, Objectives And Design: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals.

Materials And Methods: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model.

View Article and Find Full Text PDF

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids.

View Article and Find Full Text PDF