Electrocorticographic (ECoG) signals provide high-fidelity representations of sensorimotor cortex activation during contralateral hand movements. Understanding the relationship between independent and coordinated finger movements along with their corresponding ECoG signals is crucial for precise brain mapping and neural prosthetic development. We analyzed subdural ECoG signals from three adult epilepsy patients with subdural electrode arrays implanted for seizure foci identification.
View Article and Find Full Text PDFSingle pulse electrical stimulation experiments produce pulse-evoked potentials used to infer brain connectivity. The choice of recording reference for intracranial electrodes remains non-standardized and can significantly impact data interpretation. When the reference electrode is affected by stimulation or evoked brain activity, it can contaminate the pulse-evoked potentials recorded at all other electrodes and influence interpretation of findings.
View Article and Find Full Text PDFDiabetes and other age-related diseases are associated with an increased risk of cognitive impairment, but the underlying mechanisms remain poorly understood. Methylglyoxal (MGO), a by-product of glycolysis and a major precursor in the formation of advanced glycation end-products (AGEs), is increased in individuals with diabetes and other age-related diseases and is associated with microvascular dysfunction. We now investigated whether increased levels of circulating MGO can lead to cerebral microvascular dysfunction, blood-brain barrier (BBB) dysfunction, and cognitive impairment.
View Article and Find Full Text PDFDiabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment.
View Article and Find Full Text PDFNucleus accumbens (NAc) deep brain stimulation (DBS) has been increasingly explored as a treatment modality for refractory neuropsychiatric disorders. Uncovering the accumbens network that is engaged by DBS is a critical step forward in understanding how modulating this important node impacts the broader mesocorticolimbic circuit. Using whole-brain clearing and unbiased, brain-wide neural activity mapping, we found that NAc DBS increases neural activity in a coordinated mesocorticolimbic network in mice.
View Article and Find Full Text PDF