Publications by authors named "D Heimeier"

The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g.

View Article and Find Full Text PDF

The major histocompatibility complex (MHC) class I region of cattle is both highly polymorphic and, unlike many species, highly variable in gene content between haplotypes. Cattle MHC class I alleles were historically grouped by sequence similarity in the more conserved 3' end of the coding sequence to form phylogenetic allele groups. This has formed the basis of current cattle MHC class I nomenclature.

View Article and Find Full Text PDF

The addition of cattle health and immunity traits to genomic selection indices holds promise to increase individual animal longevity and productivity, and decrease economic losses from disease. However, highly variable genomic loci that contain multiple immune-related genes were poorly assembled in the first iterations of the cattle reference genome assembly and underrepresented during the development of most commercial genotyping platforms. As a consequence, there is a paucity of genetic markers within these loci that may track haplotypes related to disease susceptibility.

View Article and Find Full Text PDF

Strong balancing selection on the major histocompatibility complex (MHC) can lead to different patterns in gene frequencies and neutral genomic variation within species. We investigated diversity and geographic structure of MHC genes DQA and DQB, as well as their inferred functional haplotypes, from 2 regional populations (East and West Coast) of the endangered Hector's dolphin (Cephalorhynchus hectori hectori) and the critically endangered Māui dolphin (Cephalorhynchus hectori maui) (West Coast, North Island), and contrasted these results with patterns from neutral microsatellites. The Māui had the lowest number of alleles for DQA (2) and DQB (3), consistent with strong genetic drift acting on this remnant population.

View Article and Find Full Text PDF

Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups.

View Article and Find Full Text PDF