Optimal transport (OT) and the related Wasserstein metric are powerful and ubiquitous tools for comparing distributions. However, computing pairwise Wasserstein distances rapidly becomes intractable as cohort size grows. An attractive alternative would be to find an embedding space in which pairwise Euclidean distances map to OT distances, akin to standard multidimensional scaling (MDS).
View Article and Find Full Text PDFA key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells.
View Article and Find Full Text PDFMotivation: Transcriptional dynamics are governed by the action of regulatory proteins and are fundamental to systems ranging from normal development to disease. RNA velocity methods for tracking phenotypic dynamics ignore information on the regulatory drivers of gene expression variability through time.
Results: We introduce scKINETICS (Key regulatory Interaction NETwork for Inferring Cell Speed), a dynamical model of gene expression change which is fit with the simultaneous learning of per-cell transcriptional velocities and a governing gene regulatory network.
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci.
View Article and Find Full Text PDFThe tsunami of new multiplexed spatial profiling technologies has opened a range of computational challenges focused on leveraging these powerful data for biological discovery. A key challenge underlying computation is a suitable representation for features of cellular niches. Here, we develop the covariance environment (COVET), a representation that can capture the rich, continuous multivariate nature of cellular niches by capturing the gene-gene covariate structure across cells in the niche, which can reflect the cell-cell communication between them.
View Article and Find Full Text PDF