Publications by authors named "D Haverstick"

RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified , a female-specific chimeric transcript.

View Article and Find Full Text PDF

Accurate presumptive and confirmatory test use for forensic body fluid identification is essential for gaining contextual information for crime scene investigators. Loop-mediated isothermal amplification (LAMP) is an ideal method for forensic body fluid identification because it is highly specific and generates multi-sized amplicon DNA, and successful amplification results can be read out colorimetrically. Here, we show preliminary data on a LAMP method that rapidly identifies body fluids including venous blood, semen, and saliva, based on colorimetric response and image analysis.

View Article and Find Full Text PDF

Messenger RNA profiling for body fluid identification (bfID) is a useful approach to collect contextual information associated with a crime. Current methods require costly fluorescent probes, lengthy amplification protocols and/or time-consuming sample preparation. To simplify this process, we developed a bfID method that has the potential to be rapid in analysis time, inexpensive and fluorescence-free, combining a universal operating procedure with a high-throughout (microwell plate) platform for simultaneous detection of mRNA markers from whole blood, semen, saliva, and vaginal fluid.

View Article and Find Full Text PDF

Background: Enumeration of blood cells is an integral metric for evaluating patient health and can be used to screen for a wide range of diseases and conditions. Conventional methods rely on large, expensive, and complicated instrumentation that requires trained technicians and is not amenable to point-of-care analysis. This work demonstrates the use of a multiplexed, bead-based assay for both rapid white blood cell (WBC) count screening and accurate, multiplexed WBC counts for point-of-care analysis.

View Article and Find Full Text PDF