Biochim Biophys Acta Proteins Proteom
January 2025
Sea anemones are a rich source of peptide toxins spanning a diverse range of biological activities, typically targeting proteins such as ion channels, receptors and transporters. These peptide toxins and their analogues are usually highly stable and selective for their molecular targets, rendering them of interest as molecular tools, insecticides and therapeutics. Recent transcriptomic and proteomic analyses of the sea anemone Aulactinia veratra identified a novel 28-residue peptide, designated Avt1.
View Article and Find Full Text PDFIn the healthcare field, there has been a growing interest in using artificial intelligence (AI)-powered tools to assist healthcare professionals, including pharmacists, in their daily tasks. To provide commentary and insight into the potential for generative AI language models such as ChatGPT as a tool for answering practice-based, clinical questions and the challenges that need to be addressed before implementation in pharmacy practice settings. To assess ChatGPT, pharmacy-based questions were prompted to ChatGPT (Version 3.
View Article and Find Full Text PDFDiverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (K 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis.
View Article and Find Full Text PDFPerforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development.
View Article and Find Full Text PDFSea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (Na, TRPV1, K and Ca).
View Article and Find Full Text PDF