The high-order finite difference real-space pseudopotential density functional theory (DFT) approach is a valuable method for large-scale, massively parallel DFT calculations. A significant challenge in the approach is the oscillating "egg-box" error introduced by aliasing associated with a coarse grid spacing. To address this issue while minimizing computational cost, we developed a finite difference interpolation (FDI) scheme [Roller et al.
View Article and Find Full Text PDFAs mobile and wearable devices continue to grow in popularity, there is strong yet unrealized potential to harness people's mobile sensing data to improve our understanding of their cellular and biologically-based diseases. Breakthrough technical innovations in tumor modeling, such as the three dimensional tumor microenvironment system (TMES), allow researchers to study the behavior of tumor cells in a controlled environment that closely mimics the human body. Although patients' health behaviors are known to impact their tumor growth through circulating hormones (cortisol, melatonin), capturing this process is a challenge to rendering realistic tumor models in the TMES or similar tumor modeling systems.
View Article and Find Full Text PDFUnlabelled: The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR).
View Article and Find Full Text PDFThe real-space pseudopotential approach is a well-known method for large-scale density functional theory (DFT) calculations. One of its main limitations, however, is the introduction of errors associated with the positioning of the underlying real-space grid, a phenomenon usually known as the "egg-box" effect. The effect can be controlled by using a finer grid, but this raises the cost of the calculations or even undermines their feasibility altogether.
View Article and Find Full Text PDFIntroduction: Teleneurocritical care (TNCC) provides virtual care for hospitals who do not have continuous neurointensivist coverage. It is not known if TNCC is cost effective nor which variables impact the total billed charges per patient encounter. We characterize cost, defined by charge characteristics of TNCC compared to in-person neurocritical care (NCC), for patients with acute ischemic or hemorrhagic stroke requiring ICU care.
View Article and Find Full Text PDF