Publications by authors named "D H Barmak"

We present a stochastic dynamical model for the transmission of dengue that considers the co-evolution of the spatial dynamics of the vectors (Aedes aegypti) and hosts (human population), allowing the simulation of control strategies adapted to the actual evolution of an epidemic outbreak. We observed that imposing restrictions on the movement of infected humans is not a highly effective strategy. In contrast, isolating infected individuals with high levels of compliance by the human population is efficient even when implemented with delays during an ongoing outbreak.

View Article and Find Full Text PDF
Dengue epidemics and human mobility.

Phys Rev E Stat Nonlin Soft Matter Phys

July 2011

In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine an already presented stochastic model for dengue with a simple representation of the daily motion of humans on a schematic city of 20 × 20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is described in terms of complex networks in which links connect different blocks and the link length distribution is in accordance with recent findings on human mobility.

View Article and Find Full Text PDF

We introduce a dengue model (SEIR) where the human individuals are treated on an individual basis (IBM) while the mosquito population, produced by an independent model, is treated by compartments (SEI). We study the spread of epidemics by the sole action of the mosquito. Exponential, deterministic and experimental distributions for the (human) exposed period are considered in two weather scenarios, one corresponding to temperate climate and the other to tropical climate.

View Article and Find Full Text PDF