Publications by authors named "D Gumucio"

Critical early steps in human embryonic development include polarization of the inner cell mass, followed by formation of an expanded lumen that will become the epiblast cavity. Recently described three-dimensional (3D) human pluripotent stem cell-derived cyst (hPSC-cyst) structures can replicate these processes. To gain mechanistic insights into the poorly understood machinery involved in epiblast cavity formation, we interrogated the proteomes of apical and basolateral membrane territories in 3D human hPSC-cysts.

View Article and Find Full Text PDF

Neural rosettes (NPC rosettes) are radially arranged groups of cells surrounding a central lumen that arise stochastically in monolayer cultures of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPC). Since NPC rosette formation is thought to mimic cell behavior in the early neural tube, these rosettes represent important models for the study of neural tube morphogenesis. However, using current protocols, NPC rosette formation is not synchronized and results are inconsistent among different hPSC lines, hindering quantitative mechanistic analyses and challenging live cell imaging.

View Article and Find Full Text PDF

The hedgehog (Hh) signaling pathway plays several diverse regulatory and patterning roles during organogenesis of the intestine and in the regulation of adult intestinal homeostasis. In the embryo, fetus, and adult, intestinal Hh signaling is paracrine: Hh ligands are expressed in the endodermally derived epithelium, while signal transduction is confined to the mesenchymal compartment, where at least a dozen distinct cell types are capable of responding to Hh signals. Epithelial Hh ligands not only regulate a variety of mesenchymal cell behaviors, but they also direct these mesenchymal cells to secrete additional soluble factors (e.

View Article and Find Full Text PDF

Between embryonic days 10.5 and 14.5, active proliferation drives rapid elongation of the murine midgut epithelial tube.

View Article and Find Full Text PDF

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells.

View Article and Find Full Text PDF