Publications by authors named "D Guimond"

Background: Signalling through platelet-derived growth factor receptor (PDGFR), colony-stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor kit (c-KIT) plays a critical role in pulmonary arterial hypertension (PAH). We examined the preclinical efficacy of inhaled seralutinib, a unique small-molecule PDGFR/CSF1R/c-KIT kinase inhibitor in clinical development for PAH, in comparison to a proof-of-concept kinase inhibitor, imatinib.

Methods: Seralutinib and imatinib potency and selectivity were compared.

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring.

View Article and Find Full Text PDF

Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2 mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased.

View Article and Find Full Text PDF

We report that the apical dendrites of CA3 hippocampal pyramidal neurons are increased during labor and birth in the valproate model of autism but not in control animals. Using the iDISCO clearing method, we show that hippocampal, especially CA3 region, and neocortical volumes are increased and that the cerebral volume distribution shifts from normal to lognormal in valproate-treated animals. Maternal administration during labor and birth of the NKCC1 chloride transporter antagonist bumetanide, which reduces [Cl] levels and attenuates the severity of autism, abolished the neocortical and hippocampal volume changes and reduced the whole-brain volume in valproate-treated animals.

View Article and Find Full Text PDF

Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls.

View Article and Find Full Text PDF