Publications by authors named "D Gruyer"

Generating realistic road scenes is crucial for advanced driving systems, particularly for training deep learning methods and validation. Numerous efforts aim to create larger and more realistic synthetic datasets using graphics engines or synthetic-to-real domain adaptation algorithms. In the realm of computer-generated images (CGIs), assessing fidelity is challenging and involves both objective and subjective aspects.

View Article and Find Full Text PDF

In road traffic, mental overload often leads to a failure to notice new and distinctive stimuli. Such phenomenon is known as 'inattentional blindness'. Safe and efficient interaction between automated vehicles (AVs) and pedestrians is expected to rely heavily on external human-machine interfaces (eHMIs), a tool AVs are equipped with to communicate their intentions to pedestrians.

View Article and Find Full Text PDF

Connected and automated vehicles (CAVs) present significant potential for improving road safety and mitigating traffic congestion for the future mobility system. However, cooperative driving vehicles are more vulnerable to cyberattacks when communicating with each other, which will introduce a new threat to the transportation system. In order to guarantee safety aspects, it is also necessary to ensure a high level of information quality for CAV.

View Article and Find Full Text PDF

Autonomous vehicles (AV) are expected to improve, reshape, and revolutionize the future of ground transportation. It is anticipated that ordinary vehicles will one day be replaced with smart vehicles that are able to make decisions and perform driving tasks on their own. In order to achieve this objective, self-driving vehicles are equipped with sensors that are used to sense and perceive both their surroundings and the faraway environment, using further advances in communication technologies, such as 5G.

View Article and Find Full Text PDF

The modification of the ground state properties of light atomic nuclei in the nuclear and stellar medium is addressed, using chemical equilibrium constants evaluated from a new analysis of the intermediate energy heavy-ion (Xe+Sn) collision data measured by the INDRA Collaboration. Three different reactions are considered, mainly differing by the isotopic content of the emission source. The thermodynamic conditions of the data samples are extracted from the measured multiplicities allowing for a parametrization of the in-medium modification, determined with the single hypothesis that the different nuclear species in a given sample correspond to a unique common value for the density of the expanding source.

View Article and Find Full Text PDF