The H3.3 G34W mutation has been observed in 90% of the patients affected by giant cell tumor of bone (GCTB). It had been shown to reduce the activity of the SETD2 H3K36 protein lysine methyltransferase (PKMT) and lead to genome wide changes in epigenome modifications including a global reduction in DNA methylation.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) is a member of the Tec non-receptor tyrosine kinase family that is involved in regulating B cell proliferation. To better understand the enzymatic mechanism of the Tec family of kinases, the kinetics of BTK substrate phosphorylation were characterized using a radioactive enzyme assay. We first examined whether autophosphorylation regulates BTK activity.
View Article and Find Full Text PDFCaffeic acid phenethyl ester (CAPE), an active ingredient of honeybee propolis, has been identified as having anti-inflammatory, anti-viral and anti-cancer properties. Since the deficiency of gap junctional intercellular communication (GJIC) has been shown to be a characteristic of most cancer cells, this study was designed to test the hypothesis that the anti-carcinogenic activity of CAPE might be related to its ability to restore GJIC in tumorigenic GJIC-deficient cells (WB-ras2 cells). The results showed that CAPE restored GJIC, phosphorylation of connexin 43 (Cx43) and its normal localization on the plasma membrane in WB-ras2 cells after 3 days at 5 microg/ml concentration.
View Article and Find Full Text PDFEpidemiological studies consistently indicate that consumption of fruits and vegetables lowers cancer risk in humans and suggest that certain dietary constituents may be effective in preventing colon cancer. Plant-derived phenolic compounds manifest many beneficial effects and can potentially inhibit several stages of carcinogenesis in vivo. In this study, we investigated the efficacy of several plant-derived phenolics, including caffeic acid phenethyl ester (CAPE), curcumin, quercetin and rutin, for the prevention of tumors in C57BL/6J-Min/+ (Min/+) mice.
View Article and Find Full Text PDFThe CC chemokine, monocyte chemotactic protein, 1 (MCP-1) functions as a major chemoattractant for T-cells and monocytes by interacting with the seven-transmembrane G protein-coupled receptor CCR2. To identify which residues of MCP-1 contribute to signaling though CCR2, we mutated all the surface-exposed residues to alanine and other amino acids and made some selective large changes at the amino terminus. We then characterized the impact of these mutations on three postreceptor pathways involving inhibition of cAMP synthesis, stimulation of cytosolic calcium influx, and chemotaxis.
View Article and Find Full Text PDF