Pursuing cutting edge questions in organismal biology in the future will require novel approaches for training the next generation of organismal biologists, including knowledge and use of systems-type modeling combined with integrative organismal biology. We link agendas recommending changes in science education and practice across three levels: Broadening the concept of organismal biology to promote modeling organisms as systems interacting with higher and lower organizational levels; enhancing undergraduate science education to improve applications of quantitative reasoning and modeling in the scientific process; and K-12 curricula based on Next Generation Science Standards emphasizing development and use of models in the context of explanatory science, solution design, and evaluating and communicating information. Out of each of these initiatives emerges an emphasis on routine use of models as tools for hypothesis testing and prediction.
View Article and Find Full Text PDFBiological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithm to find a safe velocity requiring minimal deviation from the original velocity.
View Article and Find Full Text PDFBackground: Many animals must locate odorant point sources during key behaviors such as reproduction, foraging and habitat selection. Cues from such sources are typically distributed as air- or water-borne chemical plumes, characterized by high intermittency due to environmental turbulence and episodically rapid changes in position and orientation during wind or current shifts. Well-known examples of such behaviors include male moths, which have physiological and behavioral specializations for locating the sources of pheromone plumes emitted by females.
View Article and Find Full Text PDFMany of the most interesting questions in organismal biology, especially those involving the functional and adaptive significance of organismal characteristics, intrinsically transcend levels of biological organization. These organismal functions typically involve multiple interacting biological mechanisms. We suggest that subdisciplinary advances have led both to the opportunity and to the necessity to reintegrate knowledge into a new understanding of the whole organism.
View Article and Find Full Text PDFInterface Focus
December 2012
Social aggregations such as schools, swarms, flocks and herds occur across a broad diversity of animal species, strongly impacting ecological and evolutionary dynamics of these species and their predators, prey and competitors. The mechanisms through which individual-level responses to neighbours generate group-level characteristics have been extensively investigated both experimentally and using mathematical models. Models of social groups typically adopt a 'zone' approach, in which individuals' movement responses to neighbours are functions of instantaneous relative position.
View Article and Find Full Text PDF